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Using Nuttall's compact formula for the [n, n ~ I] Pade approximant, the
authors show that there is a natural connection between the Pade approximants
of a series of Stieltjes and orthogonal polynomials. In particular, we obtain the
precise error formulas. The [n, n - 1] Pade approximant in this case is just a
Gaussian quadrature of the Stieltjes integral. Hence, analysis of the error is now
possible and under very mild conditions it is shown that the [n, n + j], j;;;. -1,
Pade approximants converge to the Stieltjes integral.

1. INTRODUCTION

This paper is concerned with properties of the diagonal Pade approximants
of Stieltjes series. In particular we develop a natural connection between the
diagonal Pade approximants and systems of orthogonal polynomials using
the compact formula of Nuttall (which we have generalized in [1]). Secondly,
we give some error formulae in terms of these polynomials. Finally, observing
the connection between the Pade approximants and Gaussian quadrature
for the measure in the Stieltjes integral

JeX) da(t)
o I - tz

whose formal power series is our Stieltjes series, we prove that the diagonal
Pade approximants converge uniformly to the integral (1.1) on compact sets
disjoint from the interval [0, a)). The proof is relatively elementary and,
unlike Baker's, does not use determinant theory. (Baker [3] proves only that
the Pade approximants converge).

The connection between orthogonal polynomials and Pade approximants
has been observed by Wheeler and Gordon [4, p. 99-1281 who have
investigated approximants of the integral

CF(t) da(t),
'0
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where a is a bounded positive measure and F(t) E C[O, (0). This problem
includes (1.1) because F(t) is permitted to have parametric dependence on
any number of variables. In a more recent paper, Bessis [5] makes similar
observations in a holomorphic operator setting.

We derive our results using independent and elementary proofs, and in
particular we prove convergence. Also, we give an application of the Pade
approximant method to an irregular singular point problem in the theory of
differential equations.

We start with a brief description ofPade approximation. The idea is simple:
Given a formal power series

ao =Ie 0, let Q(z) = qo + q1z + ... + qnzn and P(z) = Po + P1Z + ... + Pmzm
be polynomials of degrees no greater than nand m, respectively. We wish to
determine the constants qo ,... , qn and Po ,... , Pm so that (1.2) holds for the
formal power series on its left:

fez) Q(z) - P(z) = dm+n+1zm+n+1 + ....

This requires that the constants Pi and qi satisfy

(1.2)

L al_jqj - PI = 0,
j

1= O, ... ,m,

1= m + I, ... , m + n.

m

L aj-n+1aj
j~n-l

A rank argument shows that this system can always be solved nontrivially.
In fact, the ratio P(z)/Q(z) is given by Baker [3], namely,

am+1

P(z)
Q(z) = [n, m](z) = -a-m---n-+-l---am--n-+-2-----a-m-+-l-

when the determinant in the denominator is nonzero. Here, [n, m](z) denotes
the [n, m] Pade approximant to fez).
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It was observed recently by Gragg [10] that the form (1.2) is equivalent to
the form

fez) - P(z) = O(Z")
Q(z)

as z -+ 0, ( 1.3)

where P(z) and Q(z) are polynomials of degrees less than or equal to m and n,
respectively, and v is as large as possible.

In the case of series of Stieltjes, the formal power series for the integral (1.1)
is L';:o ajzi where the coefficients aj are the moments of the positive measure
da(t),

aj = fXJ t i da(t).
o

To eliminate trivial cases, the corresponding function aCt) is assumed to have
infinitely many points of increase. It is well known [2] that the sequence {an}
and aCt) uniquely determine one another.

2. ORTHOGONAL POLYNOMIALS AND PADE ApPROXIMANTS

Let eP be an increasing real-valued function on [0, 00), with infinitely many
points of increase. Then the measure deP is positive on [0, 00). If we assume
that all the moments

aj = Joo t j deP
o

are finite, the formal power series

(2.1)

(2.2)

(2.3)

is called a series of Stieltjes. In a natural way this formal power series is
associated with the function

fez) = J'oo deP(t) .
o I - zt

Note that in many papers on Pade approximation (e.g., Baker [3]) the
integral in (2.3) is defined with -z instead of z. We feel, however, that the
resulting formulas are simpler with the form of the integral used in (2.3).
Let {L,.J, k = 0, 1, ... , be the orthonormal set of polynomials with respect to
the measure deP with positive leading coefficients. That is, Lk is a polynomial
of exact degree k, say

k

Lk(t) = L llt j
,

j~O

for k = 1,2,... , (2.4)
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(2.5)

where Ski is the usual Kronecker delta.
We can now state two theorems which demonstrate the intimate connection

between orthogonal polynomials and Pade approximants.

THEOREM 2.1. The [n, n - 1] Pade approximant to the Stieltjes series
L;:o aizi is given by

where

[n, n - I ](z) = P(z)/Q(z),

n

Q(z) = znLn(z-l) = I l~_kzk,
k=O

n-l n

P(z) = L Zk I l;n-i-kan-i,
k=O i=n-k

(2.6)

(2.7)

and the lkn are the coefficients of the orthogonal polynomial Ln of degree n
given in (2.4).

We postpone a proof of this theorem, but we note an immediate and
interesting corollary which was proved by Baker [3].

COROLLARY 2.1. The poles of the [n, n - 1] Pade approximant to t2.2)
are simple and lie on the positive real axis. Furthermore, if Xl"'" Xn are the
poles of the [n, n - 1] Pade approximant and Y1 ,..., Yn+l are the poles of the
[n + 1, n] Pade approximant then

YI < Xl < Y2 < ... < Xn < Yn+l . (2.8)

To prove this corollary, we factor zn out of the denominator of (2.6) to
obtain zn(LnCz-I)). Thus the denominator vanishes at the reciprocals of the n
zeroes of the orthogonal polynomial L n . It is well known [7] that L n has n
simple zeroes in (0, 00). It is also known [7] that the zeroes of L n interlace
the zeroes of Ln+l in the sense of (2.8). This clearly implies that the zeroes of
znLn(z-I) and zn+lLn+l(z-I) interlace as well.

The second theorem which we wish to state gives an exact formula for the
error term in the [n, n - 1] Pade approximant and, as an immediate conse
quence, an important formula for [n, n - 1](z).
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THEOREM 2.2. The error in approximatingf(z) with [n, n - 1](z) is given by

I feN Ln(t)
fez) ~ [n, n -- 1](z) = L (-1) -1-- drp(t)

n z 0 - zt

or by
Z2n foc tnLn(t)

fez) - [n, n - I](z) = nL (-1) -I- drp(t).z n Z 0 - zt

In addition, the [n, n - I] Pade approximant is given by

[ _ 1]( ) = I Ix; Ln(r
1

) - Ln(t) d.l.( )
n, n z L ( -1) I _ 'f' t .

n Z 0 zt

(2.9)

(2.10)

(2.11)

We will now prove Theorems 2.1 and 2.2.

Proofof Theorem 2.1. The equation for the [n, n - 1] Pade approximant
to the Stieltjes series (2.2), obtained by Nuttall [4, p. 219], is given by

(2.12)

(2.13)

and

(2.14)

We first note that Mn(z) has the simple form

MnCz) = I eN (1 - zt) f(t) f(tV drp(t),
o

where f(t) = (1, t, t 2,... , t n- 1Y. Also,

an = I oc
f(t) drp(t).

o

Thus, we see that Eq. (2.13) is equivalent to

(2.15)

(2.16)

o = fco [(1 - zt) f(t) f(tV Cn - f(t)] drp(t)
o

= I co f(t)[(l - zt) f(tY Cn - 1] drp(t)
o

= r f(t) Pnet) drp(t). (2.11)
o
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We see immediately from (2.17) that PnCt) is orthogonal to the set
{I, t, t 2, ••• , tn-I}. Since Pn(t) is a polynomial of degree n or less, it follows that
Pn(t) must be a constant multiple of Ln. That is,

j = 1, ... ,11- I.

n

Pit) = f3L n(t) = f3 L l/'t j
•

j=O

Equating like powers, we obtain f3 = -cn~lzI1nll and

Co + zUonl1nn) Cn-l = I

-ZCj_l + Cj + zU/11nn) Cn- 1 = 0,

Solving for the c/s yields, for j = I, ... , n,

The Pade approximant is then given by

n

[11,11- 1](z) = L cn-ian-i
1=1

= P(Z)/Q(z),

where P(z) and Q(z) are obviously given by formulae (2.7).

Proof of Theorem 2.2. Consider the difference

(2.18)

(2.19)

(2.20)

(2.21)

Q.E.D.

fez) - [11,11 - I ](z)

= 1 foo [ z
n
Ln(z-l) - (I - zt)(2:::Z:~z/c :L7=n-k l;n_j_ktn-1) ] d..l..(t)

znLn(z-I) 0 I - zt 'f' ,

(2.22)

which follows from (2.7), (2.1), and (2.3). Let F(z, t) be the numerator of the
integrand in (2.22). Clearly, F(z, t) may be written as

n n-l n n-l n

F(z, t) = L In_kzk - L Zk I l;n_j_kt ,,-1 + L Zk+l L l;n_j_IJ,,-i+l

k~O k=O j=n-k k="O j~n-I:

= 11 + 12 + 1 3 ,

In the third term above, 13 , let k' = k + I,j' = .i - ], then 13 has the form

n-l n-l n-l

= L zk' L l;n_j' _Ic,t n- i ' + zn L l~_j'tn-j'.
k'~1 j'~,,-k' j'~O
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Also, the second term /2 has the form

'!i-I n~l n-I

1 '\" '\ I" n-i, '\ "In
2 = L Z L 2n--J-k f ---t- i..J Z n-·k·

I..~O i~,,-k k~O

Combining all these three terms 11 , /2 , and I:) , we have that

n~l

F(z, t) = z"/o" + z" I I~_it"-i
i~O

Hence, (2.9) follows immediately from (2.22) and (2.23).
To establish (2.10), we note that

(2.23)

I
1 - zt

By (2.9),

Since Ln(t) is orthogonal to alI polynomials of degree less than n,

j = O, ... ,n - I.

Using this fact in the previous formula, we obtain (2.10).
Finally, we remark that (2.11) follows immediately from (2.9) and (2.3).

Q.E.D.

3. GAUSSIAN QUADRATURE FORMULAS

We have just seen the remarkable connection between the [n, n - 1]
Pade approximants and orthogonal polynomials. It is also interesting and
uesful then to learn that the [n, n - 1] Pade approximant of the Stieltjes
series (2.2) is exactly the nth order Gaussian quadrature approximation to
the integral (2.3).
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THEOREM 3.1. The [n, n - 1] Pade approximant of (2.2) is the Gaussian
quadrature approximation to (2.3). That is,

" ex ~.. rx
~_,[n, n - I ](z) = I I ""' ~ - .. -

1;~1 - zx,.. '0 I - zt
(3, I)

(3.2)

where the Xk = X):"l, k = I, ... , n are the zeroes of L" and the ex",.. are the
Gaussian weights (Cotes numbers or Christoflelnumbers).

For more information on Gaussian quadrature the reader may consult
Davis [5], Davis and Rabinowitz [7], and Stroud and Secrest [11]. One of the
very important facts about Gaussian quadrature is that the weights, ex"k , are
positive and sum to f: de/>. This fact alone yields an easy proof of the
following result due to Baker [3].

COROLLARY 3.1. The set {tn, n - 1](z)}, n = 1,2,... , is a normal family
in the cut complex plane C\[O, 00) and the residues of tn, n - 1](z) are all
negative.

We first use Corollary 3.1 to prove Corollary 3.2 below. Since the function
get) = I/O - zt) is bounded and continuous on [0, 00) for each z ¢ [0, (0),
it follows by arguments similar to those in Uspensky [12] that under rather
mild conditions the Gaussian quadrature approximation to f; get) de/>
converges for each fixed z. This observation combined with Corollary 3.1
will yield a proof of Corollary 3.2.

COROLLARY 3.2. The sequence {[n, n - 1](z)} converges uniformly on
compact subsets of the cut complex plane C\[O, (0) to

x de/>
fez) = I

o
1 - zt

if the moments am satisfy am = O«2m + I)! R2m) for some R > 0.

Proof of Theorem 3.1. We first calculate the residues of [n, n - 1](z).
Let Xj* be a pole of the Pade approximant. By Corollary 2.1, Xj = l/xj* is
a zero of L,,(t) so that

(z - x·*) Joo L (Z-I) - L (t)
lim (z - x;*)[n, 11 - I ](z) = lim J " n de/>
Z-"'/ z->x: L n(Z-I) 0 I - zt

= lim «1/11') - (I/x;» Joo Ln(w) - Ln(t) de/>
"'->1'/ Ln(w) 0 I - 1/11'

= _1_ x,* JX L,,(t) de/>
Ln'(x;) J 0 Xj - 1

~ -Xj*CXn.i'
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where (Xnj is the weight corresponding to Xj in the Gaussian formula (see for
example Davis [6, p. 343]). This result follows since

(3.3)

is the Lagrange polynomial of degree n - I interpolating 0 at {Xi};"'j and 1
at Xj. Thus

n -,)lnjX;*
[11,11- l](z) = 2: --:;-,*

j=l ~ - '\j

n

== I ctn_j-,
j=l I - ZXj

which is the Gaussian approximation to the integral (2.3).

(3.4)

Q.E.D.

We have just shown in calculation (3.2) that the residues of the Pade
approximants are negative. This observation proves the second portion of
Corollary 3.1. We now complete the proof of Corollary 3.1. Using the
partial fractions decomposition obtained in (3.4) we see that

, \1 - Xj Re(z) ;): 1 if Re(z)::( 0
I I - ZXj I ;): Illm(z)1/1 z I, z ~ o. (3.5)

The second inequality follows by observing that Xj is real and I I - zXj I =

Iz 11(1/z) - Xj I. Hence

n
(X.

I[n, n - 1](z)1 ::( J~l 11 _J
ZXj

1::(
(I z III Im(z)1 f'" de/>,

o

Re(z) ::( 0

(3.6)
1m Z ~ o.

Therefore, [n, n - 1](z) is uniformly bounded on compact subsets of
q[O, 00] and is thus a normal family by Montel's theorem, proving
Corollary (3.1). Q.E.D.

Corollary 3.2 now follows easily by Vitali's theorem and the fact that the
quadrature approximations converge pointwise to

fOO de/>
1(z) = -1-·

o - zt

This is slightly stronger than Baker's result since we know what the Pade
approximants converge to. This completes the discussion of the [n, n - I]
Pade. We now turn to the [n, n + j] Pade approximant.
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The results of the previous sections may be extended quite naturally to
cover the [n, n + j] Pade approximants wherej ~ -I. In fact, we will see that
the [n, n + j] Pade approximant of the Stieltjes series (2.2) is just a fixed
polynomial of degree j plus zj+l times an [n, n - I] Pade approximant of
another Stieltjes series [I]. That is, let

. foo t
HI dep foo 1

,Ii(z) = 0 1 - zt = 0 1 - zt depi .

Then jj(z) is associated with the Stieltjes series

(4.1)

(4.2)

where aj> = f: t k depj = f: tk+j dep. Denoting by [n, mL(z) the [n, m] Pade
approximant of the series (4.2) we see that

j

[n, n + j](z) = L atzt + zi+l[n, n - l]j (z).
I~O

(4.3)

We can therefore transfer all the results collected in Sections 2 and 3 to
the [n, n + j] case where j ~ -1. Thus we obtain the following results:

THEOREM 4.1. The [n, n + j] Pade approximant to the Stieltjes series
:L;:o ajzj is given by

where

j

[11, n + j](z) = L atz l + P(z)/Q(z)
I~O

n

Q(z) = znLn(Z-I) = L l~_kz\
k~O

n-l n

P(z) = L Zk L l;n-j-kan-i,
k~O i=n-k

(4.4)

(4.5)

and where L n is the orthogonal polynomial of degree n with respect to the
measure depj and Liz) = :L=~o lknzk.

Corollary 2.1 becomes in this general case:

COROLLARY 4.1. The poles of the [n, n + j], j ~ -1, Pade approximant
to (2.2) are simple and lie on the positive real axis. Furthermore, the
poles of the [n, n + j] Pade approximant interlace with the poles of the
[n + 1, n + 1 + j] Pade approximant.
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The error formulae now become:

THEOREM 4.2. The error made in approximating fez) with [n, n -+- j](z),
j ~ -I, is given by

f( ) - [ -+- ']( ) = ZHI feN Lit) dc/JiCt)
z n, n .I z L ( -I)' 1

n z 0 - zt

or by

f( ) - [ -+- .]( ) = z2n+j+1 foo tnLnCt) dc/JiCt)
z n, n .I z nL ( -I) I .z n Z 0 - zt

In addition the [n, n -+- j] Pade approximant is given by

. _ j l I foo Ln(Z-I) - Ln(t)
[n, n -+-.1 ](z) - I alz -+- L ( -I) I _ dc/JiCt),

I~O n Z 0 zt

(4.6)

(4.7)

(4.8)

where in all of the above L n is the orthogonal polynomial of degree n with
respect to dc/Jj .

The analogue of Theorem 3.1 is the following.

THEOREM 4.3. The [n, n -+- j] Pade approximant, j ~ -I, of (2.2) is zi+1

times the Gaussian quadrature approximation to (4.1) plus a polynomial of
degree j. That is,

j foo d,l.·='= I ajzl -+- zHI __'1-'_,- ,
I~O 0 I - zt

(4.9)

where the Xk are the zeroes of L n , the orthogonal polynomial of degree n
with respect to dc/Jj , and the Cink are the Gaussian weights.

As corollaries we obtain:

COROLLARY 4.2. The set {[n, n -+- j](z)}:;'~I' j ~ -I, is a normal family
in C\[O, 00) and the residues of[n, n -+- j](z) are all negative.

COROLLARY 4.3. The sequence ([n, n -+- j](Z)}:;'~I' j ~ -I, converges
uniformly on compact subsets not intersecting [0, 00) to

f OO dc/J
fez) = 0 I - zt

if the moments am satisfy am = O«2m -+- I)! R2m) for some R > 0.
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In this section, we will apply the theory we have developed in previous
sections to investigate the rate of convergence of the [n, n - 1] Pad6
approximants in the case

(5.1 )

ex > -I, z < O. In particular, we will obtain an asymptotic estimate for the
error term given in Theorem 2.2, give a table of [n, n - 1] for ex = 0, and
compare the table with the known form of1(z).

According to Theorem 2.2, the error term has the form

En(z) =c 1(z) - [n, n - I](z)

(5.2)

where L n ~ is the nth order generalized Laguerre polynomial. This polynomial
can be written in two ways:

and

T(ex + I + n)
Ln~(t) = n! T(ex + I) cI>(-n, ex + 1; 1),

(5.3)

(5.4)

where cI>( -n, ex; t) is the confluent hypergeometric function (see Erdelyi
[8, Chap. 6 and 10)). Thus, by substituting 5.3 and 5.4 into 5.2 and integrating
the resulting expression by parts,

n!r(ex+I)(-z)n fOC[ t ]n t~e-t
E = --dt (55)

n r(O/.+ I + n)cI>(-n, ex + I,rl ) 0 I-zt I-zt' .

If we now set p = -rl and T = (pn)-l t, (5.5) becomes,

n! r(O/. + I) p~+ln~ foc [ T ]n T~e-pnT

En = T(ex + I + n) cI>(-n, ex + I, -p) 0 T + (lIn) T + (lIn) dT. (5.6)

The integral in (5.6) can be put into the form
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where g(T) = pT - In(T + lin) - In T. Using standard saddle point
methods, this integral has the asymptotic form as n -4- <XJ:

(5.7)

In addition, (/)(-n, ex + 1, -p) has the asymptotic form as n -4- 00

(see Erdelyi [7, p. 279]). Finally, it is obvious that as n -4- <XJ

T(ex + 1 + n)ln! ,....., n".

Using (5.7), (5.8), (5.9) in (5.6), we have that

(5.8)

(5.9)

(5.10)

as n -4- <XJ.

We now include a numerical example which illustrates the rapid conver
gence of the [n, n - 1] Pade approximants. The computations were done
using the techniques of Section 3.

TABLE I

n [n, n - 1]( - 2) [n,n-l](-I) [n, n - 1]( -0.5)

2 0.4117647 0.5714285 0.7142857
4 0.4501018 0.5933014 0.7222222
6 0.4579924 0.5957829 0.7226167
8 0.4602080 0.5962146 0.7226519

10 0.4609530 0.5963107 0.7226563
12 0.4612358 0.5963360 0.7226571

f( -2) = 0.4614552 f(-I) = 0.5963474 f( -0.5) = 0.7226572

The above Table I was computed on a Hewlett-Packard 9830. The
function to be approximated is given by (5.1) with ex = O. We note that f(z)
has the form

fez) = z-lr1/zEi(-liz),

where Ei(-liz) is the exponential integral and is tabulated in many places.
We have computed the [n, n - 1] Pade approximants of/for n = 2,4,...,12
and evaluated this approximation at z = -2, -1, -0.5. The exact value of/
is given at the bottom of each column. All numbers have been rounded
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to seven significant digits. We note that as n increases the value [n, n - l](z)
increase to the true value of the function. In fact, this behavior on the
negative real axis may be proved in general, see, e.g., Baker [3].

We now consider the class of differential equations

Z2y " + (pz - l)y' + qy = 0, (5.11)

where p = q + 2. We note that z = 0 is an irregular singular point of (5.11);
despite this we expand y in a formal power series about the origin and observe
that the [n, n + j], j ~ -1, Pade approximants converge to a solution of
(5.11). For simplicity we consider the special case of (5.11) when p = 3,

Z2y" + (3z - 1) y' + y = O.

Expanding, we obtain the divergent power series

00

y(z) ,....., L n! zn.
n~O

Note that this formal series is associated with the Stieltjes integral

f
OO e-t .
-1-- dt ,

o - zt

(5.12)

(5.13)

(5.14)

furthermore, it can be verified that this is indeed a solution to (5.12). If we
can compute the [n, n + j], j ~ -1, Pade approximants to (5.13), then we
shall know by Corollary 4.3 that these approximants converge to (5.14) as
n -+ 00. The remarkable fact is that this summation technique (pade
Approximation) completely recovers the solution (5.14) of (5.12). The other
independent solution of (5.11) and (5.12) can be obtained by a formal power
series expanded at z = 00.

6. SUMMARY AND REMARKS

The results of Sections 2-4 indicate the remarkable relationship between
Stieltjes series, Pade approximants, and orthogonal polynomials. This leads
naturally to the interpretation of the [n, n + j], j ~ -1, Pade approximant
as a quadrature approximation to the integral.

Ofcourse, the arguments used in the previous sections have some immediate
generalizations. First, functions like

fez) = fOO 1 e-
t
' 2 dt

o - zt
(6.1)
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may be transformed into a series of Stieltjes by the simple change of variable
u = t 2• Further, there is really no reason to restrict our integration to the
positive real axis. All our arguments hold true for nonnegative measures d¢
on the line with some additional technical assumptions. These are calIed
extended series of Stieltjes.

Algebraically, there is no reason to assume that d¢ is positive. We are
presently studying this problem and more results will appear later.
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